Can Quasi-Experiments Yield
Causal Inferences?

Matthew L. Maciejewski, PhD Durham VA HSR&D and Duke University

Sample

	Year	Age	Race	SES	Health status
Study 1					
Study 2					

Intervention

	Intervention ist	# of interactions	Duration of each interaction	Single topic or multiple topics	Content
Study 1					
Study 2					

RCT considered Gold Standard of Benefit Design for Several Reasons

- Create balance in observed covariates
 - Reduces number of competing hypotheses for variation in outcomes to <u>one</u> (treatment assignment)
 - Control group outcome is a valid counterfactual (unbiased estimate of outcome for treatment group had they not been randomized to treatment)
- Treatment effect generalizes to entire sample
- Statistical result <u>is</u> causal effect of treatment on outcome

Context for Perceived Inferiority of Quasi-Experiments

- Prior comparisons of RCTs and non-RCTs
 - Experimental results rarely replicated
 - Even when applying instrumental variables (IV) methods (LaLonde 1986)
- RCTs typically compared to non-identical samples and non-identical outcomes in different data
 - Conclusion has been that design (quasi-experiment) is the cause of difference, not sample or outcomes
 - Could outcomes be similar across designs if same sample & outcomes?

Differences in Samples for RCTs and Quasi-Experiments

- RCTs
 - Conducted on highly selected populations
 - Rarely pregnant women, highest risk people, oldest
- Quasi-experiments
 - Conducted on general populations
- Differences not necessarily due to randomization
 - Could be entirely due to different samples included

LaLonde (1986) Job Training Results

Estimator	Wage Difference for Men
Unadjusted RCT	\$886
Non-RCT estimate	es from PSID & CPS-SSA
Unadjusted	Low=-\$1637, High=\$1714
Age adjusted	Low=-\$1388, High=\$195
Age, schooling, race & pre-period wage	Low=-\$1228, High=\$1466
IV	Low=-\$667, High=\$889

Stukel 2007 JAMA: Mortality Impact of Cardiac Catheterization

Model	Risk Ratio (95% CI)
Unadjusted survival	0.36 (0.36, 0.37)
Multivariate adjustment	0.51 (0.50, 0.52)
Simple PS Adjustment: Deciles + Covariates	0.52 (0.51, 0.53)
Fancy PS Adjustment: Deciles + Covariates	0.52 (0.51, 0.53)

Conclusion

- 1) Adjustment for covariates important in non-RCT
- 2) Multivariate & PS regressions are same

Stukel 2007 JAMA: Mortality Impact of Cardiac Catheterization

Model	Risk Ratio (95% CI)
Unadjusted survival	0.36 (0.36, 0.37)
Multivariate adjustment	0.51 (0.50, 0.52)
Simple PS Adjustment: Deciles +	0.52 (0.51, 0.53)
Covariates	
Fancy PS Adjustment: Deciles + Covariates	0.52 (0.51, 0.53)

What to conclude?

- 1) Regression & PS results are both right?
- 2) Results are both wrong?

4	2	
,	J	

Stukel 2007 JAMA: Mortality Impact of Cardiac Catheterization

Model	Risk Ratio (95% CI)
Unadjusted survival	0.36 (0.36, 0.37)
Multivariate adjustment	0.51 (0.50, 0.52)
Simple PS Adjustment: Deciles +	0.52 (0.51, 0.53)
Covariates	
Fancy PS Adjustment: Deciles + Covariates	0.52 (0.51, 0.53)
Instrumental Variables	0.84 (0.79, 0.90)
RCT Results	0.79-0.92

What to conclude?

- 1) Regression & PS results are both right?
- 2) Results are both wrong? This is it.

Re-appraising the Value of Quasi-experiments

- An under-used design allows direct comparison of results from RCT & non-RCT
 - Within-study comparison study
- Four-arm study: 2-stage process
 - Randomize to randomized treatment or self-selected treatment
 - Same treatments, controls, outcomes, timing
- Can compare two treatment effects!
 - Difference btn treatment & control in RCT "arm"
 - Difference btn treatment & control in non-RCT "arm"

Design of Within-Study Comparison by Shadish (JASA 2008) Recruited Students					
Randomi	Pretests then Randomly Assigned Randomized Nonrandomized				
1	Experiment Study				
Mathematics Training	Vocabulary Training	Mathematics Training	Vocabulary Training		

Details of Shadish (2008) Design

- Participants from one college
- Participants pretested on several covariates
- Chose math and vocabulary training because
 - Easy to induce effect with item difficulty
 - Math phobias cause plausible selection bias
- All participants treated together (in same class) without knowledge of different conditions
 - People randomized to math in same training class as people self-selecting math
- Everyone post-test on math & vocab outcomes

Unadjusted Results:

Vocabulary Training Effect on Vocabulary Outcome

	Vocab Training	Math Training	Mean Difference	Absolute Bias
Unadjusted RCT	16.19	8.08	8.11	
Unadjusted Quasi- experiment	16.75	7.75	9.00	0.89

Conclusions

- 1. Effect of vocab training on vocab scores was larger (9 of 30 points) when participants could self-select into vocabulary training
- 2. The 8.11 point effect in RCT was overestimated by 11% (0.89 points) in the quasi-experiment

Propensity Score Modeling

- Based on a priori model of selection process that informed prospective pre-test assessments
- Extensive adjustment
 - Math & vocabulary pretest scores, ACT, GPA, prior exposure to math courses, math anxiety, demographic
 - "Big 5" personality traits (extraversion, emotional stability, agreeableness, intellect, & conscientiousness)
 - Extensive adjustment reduced bias a lot (59-96%)
- Limited adjustment (comparable to claims)
 - Age, sex, race & marital status had reduced bias modestly (12-30%)

Bias Reduction Fairly Similar Across Different Propensity Score Methods

Implications of Shadish (2008)

- Sampling design produced non-equivalent groups on observables
- Big overlap in baseline values in RCT & non-RCT groups due to 1st stage randomization made propensity scores more valid
- Extensive measurement of relatively simple selection process, though not homogeneous
 - Propensity score matching may not be effective if selection process is complex (as in job training)
- <u>Bottom line:</u> Propensity score results from extensive adjustment matched RCT results

Limitations of Shadish (2008)

- Short duration (15 minutes)
 - Not costly to conduct
 - Little incentive for non-compliance
- Absence of non-compliance with treatment assignment
- Short time between pretest & post-test, and short time between treatment & posttest
 - Change attributable to few things besides treatment
- Not generalizable to complex medical settings
 - Longer duration, have significant non-compliance and delay between treatment and outcomes assessment

Conditions Under Which Quasi-Experiments Match RCT Results

- Similarity between groups in pre-period values
 - When geographically local, comparison groups may not differ on major observables b/c provider & site effects controlled (e.g., pts in same clinic)
 - ACEI example (Hebert & Maciejewski)
- Rigorous conceptualization and measurement of selection process to support effective matching
 - Pre-period outcomes are particularly important
 - Adjustment using "off the shelf" vars not enough
- Regression discontinuity

Descriptive Statistics of Unmatched CA ACEI and Non-CA ACEI Cohorts

	CA ACEI Cohort?	Non-CA ACEI Cohort?	Standardized Differences
Age	76.1	75.9	7.17
Female (%)	65%	64%	2.09
White Race (%)	76%	83%	17.41
Black Race (%)	9%	7%	7.38
Baseline AMI (%)	6.7%	4.1%	11.52
Elixhauser Score	5.69 (7.79)	4.66 (6.99)	44.54
Baseline Expenditures	\$8081(15210)	\$6180 (12798)	16.06
Baseline # Meds	6.7 (3.8)	6.4 (3.6)	26.03
Office visits	8.6 (8.3)	8.5 (9.0)	4.42

Careful Consideration of Selection Process

- Bias can be significantly reduced if three steps of confounder adjustment are done
 - Identification of all relevant confounders from literature, theory, and experts
 - Error-free measurement
 - Proper modeling
- Use of variables of convenience fails 1st step, so unlikely to reduce bias fully
 - Especially true in claims data?

•		
•		
•		
•		

Reconsider Value of Quasi-Experiments for Causal Inference?

- Comparing good RCT to poor quasi-experiment confounds design type and the quality of its implementation
 - Logical fallacy
- This conclusion is ex post facto because we know RCT results in advance
 - Rarely true; more often have to infer ala Stukel
- Quasi-experiments satisfying three conditions more likely to generate valid causal estimates

_		•	_
/ N::	ACT!	\sim	~ ,
	esti		
~~		• • •	•

References

- Cook, Shadish & Wong, 2008. *J Policy Analysis* and Management, 27(4): 724-750
- Diaz & Handa, 2006. *J Human Resources*, 41(2): 319-345.
- LaLonde RJ, 1986. Amer Ec Rev, 76(4): 604-18
- Shadish, Clark & Steiner, 2008. JASA, 103(484): 1334-1356
- http://steinhardt.nyu.edu/scmsAdmin/uploads/ 002/477/Tom%20Cook-FINAL.pdf

References & Resources

- 1. Cook, T. (Producer). (2008). When Experiments and Observational Studies give comparable Causal Estimates:. [Powerpoint presentation] Retrieved from http://steinhardt.myu.edu/scmsAdmin/uploads/002/477/Tom%20Cook-FINAL.pdf

 2. Diaz, J. J., & Handa, S. (2006). An Assessment of Propensity Score Matching as a Nonexperimental Impact Estimator. [Article]. Journal of Human Resources, 41(2), 319-345.

 3. LaLonde, R. I. (1986). Evaluating the Econometric Evaluations of Training Programs with Experimental Data. The American Economic Review, 76(4), 604-620.

 4. Shadish, W. R., Clark, M. H., & Steiner, P. M. (2008). Can Norandomized Experiments Yield Accurate Answers? A Randomized Experiment Comparing Random and Norandom Assignments. Journal of the American Statistical Association, 103/440), 1324-1344. doi: doi:10.1193/016214508000000733

 5. Studel, T. A., Fisher, E. S., Wennberg, D. E., Alter, D. A., Gottlieb, D. J., & Vermeulen, M. J. (2007). Analysis of observational studies in the presence of treatment selection bias: effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods. (Besearch Support, N.I.H., Extramural Research Support, N.I.H., Extramural Research Support, N.I.H.,

	_
	_
	_